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An integrated autopilot and guidance algorithm is developed, using the sliding mode control approach, for a
missile with forward and aft control surfaces. The integrated controller can account simultaneously for the guidance
and autopilot requirements using the additional degree of freedom offered by the dual-control configuration. Based
on guidance considerations, the zero-effort miss, encountered in differential games guidance solutions, is used as one
of the sliding variables in the proposed control scheme. Selection of the second surface, required due to the dual-
control configuration, is based on autopilot design considerations. Restraining the system to the zero-effort miss
surface guarantees zero-miss distance, whereas remaining on the second surface provides a damped response. The
performance of the integrated dual controller is evaluated using a two-dimensional nonlinear simulation of the
missile lateral dynamics and relative kinematics. The simulation results validate the design approach of using zero-
effort miss and the flight-control based sliding surfaces to attain high-accuracy interception in engagements against

highly maneuvering targets.
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target-missile relative displacement normal to the
initial line of sight

angle of attack

flight path angle

maneuver phase

target maneuver period

modeling errors and their bounds

control surface deflection angle

vector of control surface deflections, canard and
tail

augmented missile state vector

pitch angle

angle between the temporary and initial line of
sight

sliding mode control uncertainty controller
parameter

sliding variable

sliding vector

time constant

transition matrix

function of individual contributions in computing
the zero-effort miss

approximation/model

initial values

body frame parallel to the inertial frame

body rotating frame

canard

evasive target

evader component perpendicular to the line of
sight

equivalent control

inertial coordinate frame

kinematics

missile

missile component perpendicular to the line of
sight

pitch rate

radial, along the line of sight

tail
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Z = zero-effort miss

o = angle of attack

S, = canard control

8, = tail control

A = perpendicular to the line of sight

Superscripts

B = body contribution to the aerodynamics force and
moment

c = command

max = maximum

1. Introduction

ESIGNING an interceptor missile involves tradeoffs between

conflicting requirements. For example, to obtain the required
agility in a high-end air-to-air interception engagement, a canard
configuration is often employed due to its improved homing
performance [1]; the canard fins, located in the front part of the
fuselage, generate an aerodynamic force that is in the same direction
as the required maneuvering force, thus generating (neglecting servo
dynamics) an immediate response in the correct direction. However,
if the missile is to perform sharp initial turns, canard control may limit
its performance due to aerodynamic saturation at high angles of
attack, and tail control may be preferred. By using both canard and
tail controls, a favorable design compromise can be obtained to
provide enhanced performance.

The additional degree of freedom offered by the dual-control
system requires special consideration in the guidance and autopilot
design. In many studies, the focus was on controlling the airframe. A
sliding mode approach [2,3] with a linear strategy for blending the
two control actions was suggested in several works [4—6]. Neural
networks were used in [7] for the design of adaptive nonlinear control
for an agile missile with forward and aft reaction control systems and
aerodynamic tail control surfaces. In [8], the coefficient diagram
method was used for an all aerodynamic tail fins and canard
configuration. In recent papers [9—11], the focus was different; it was
on designing the end-game guidance strategy for such a dual-control
missile. The approach was based on the assumption that the
additional degree of freedom can be best used by providing the
guidance law with the capability of optimally imparting the
commands to the two controls. In [9], the missile control limits were
treated indirectly, by incorporating penalties on the use of the
controls in the linear quadratic differential games formulation of the
problem, whereas in [10], the control bounds were explicitly taken
into account. The performance of these control schemes was
investigated using high-order noisy simulation in [11] and the
superiority over classical designs was advocated.

Integrated flight-control and guidance law design may enhance the
end-game performance of the interceptor by accounting for the
coupling between the control and guidance dynamics. Moreover, in a
dual-control configuration it will inherently make use of the
additional degree of freedom. In such designs, the entire guidance
and control loop is stated as a solution to a finite horizon control
problem, instead of the common approach treating the inner autopilot
loop as an unrealistically infinite horizon one. The integrated design
also allows for a more effective use of the information on the missile
states in the guidance problem formulation, as opposed to using only
the missile acceleration data in separated guidance loop designs. In
[12], a game theoretic approach was used for the design of an
integrated autopilot-guidance linear controller, which minimizes the
final miss distance and control energy under worst case target
maneuvers and measurements uncertainties. The feedback
linearization method [13] was used in [14] in a finite horizon
problem setting. In [15], a state-dependent Riccati differential
equation approach was used for designing the integrated controller.
Using a 6 degrees-of-freedom simulation, it was shown that the
integrated controller provides improved miss distance statistics
compared with the conventional two-loop design practice.

In recent papers [16,17], the sliding mode control (SMC)
methodology was applied to the design of an integrated guidance-
autopilot controller. The usefulness of SMC stems from being a
nonlinear, robust control design approach enabling to maintain
stability and performance in the presence of modeling errors.
Simplified controllers are obtained using SMC by converting a
tracking problem of an nth order dynamical system into a first-order
stabilization problem. This approach leads to satisfactory perform-
ance in the presence of bounded but otherwise arbitrary parameter
inaccuracies and model uncertainties. In [16], it was applied to obtain
a two-loop design, using backstepping and high-order SMC
methods. In the outer SMC-like guidance loop, a sliding surface that
depends on the line-of-sight (LOS) rate was defined with the missile
pitch rate used as a virtual control. The inner loop was designed to
robustly enforce the pitch rate command of the outer loop in the
presence of uncertainties. Numerical simulation was used to
demonstrate the performance and robustness of the integrated design
in tracking an evasive maneuvering target in the presence of
atmospheric disturbances and uncertainty in the plant and actuator
dynamics. In [17], SMC was used for the derivation of an integrated
autopilot-guidance controller, using the zero-effort miss (ZEM)
distance as its single sliding surface. The performance of the
integrated controller was compared with that of two different two-
loop designs and the superiority of the integrated design was
demonstrated, especially in severe scenarios where spectral
separation between guidance and flight control, implicitly assumed
in any two-loop design, is not valid.

In the present paper, the SMC methodology is used for the design
of an integrated guidance-autopilot controller for a missile controlled
by two aerodynamic surfaces. Compared with the single control case,
the additional degree of freedom allows for achieving other
objectives in addition to guidance performance. One such objective
may be improving the interceptor dynamic response. This may
enhance guidance performance, but it may also be needed to address
other considerations such as seeker or warhead working conditions.
In the SMC context, this is obtained by introducing an additional
sliding surface. This surface is selected using flight-control
considerations, such as achieving improved stability and shaped/
damped response.

In the next section, the actual, approximate, and linearized
kinematics and dynamics models of the interception problem are
introduced. Next, the integrated guidance-autopilot controller is
synthesized, along with the definition of the two sliding surfaces used
for the design. Then, the interaction between the surfaces and the
homing performance is analyzed using nonlinear simulations.
Concluding remarks are offered in the last section.

II. Model Derivation

A skid-to-turn cruciform, roll-stabilized missile with forward and
aft maneuver surfaces is considered. The motion of such a missile can
be separated into two perpendicular channels. Consequently, the
guidance and control of a target interception problem can be treated
as planar in each of these channels. We first present the full nonlinear
kinematics and dynamics equations of the interception problem,
which will serve for analysis. Then, approximate dynamics, which
will be used for the design of the nonlinear sliding mode guidance-
autopilot controller, are presented. Finally, linearized equations are
derived, which will serve as the basis for the selection of the SMC
sliding surfaces.

A. Nonlinear Kinematics and Dynamics
1. Engagement Kinematics

In Fig. 1, a schematic view of the planar end-game geometry is
shown. Neglecting the gravitational force, the engagement
kinematics, expressed in a polar coordinate system (r, A) attached
to the missile, is

=V, (1a)
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0, X1

Z;
Fig. 1 Planar engagement geometry.

A=Vy/r (1b)
where the closing speed V, is
V, ==V cos(yy —A) + Vicos(yg + A)] 2
and the speed perpendicular to the LOS is
V.. ==Vysin(yy —A) + Vgsin(yg + A) 3)

The interception duration or the time-to-go used in the subsequent
derivations, is approximated by

tyo =—1/V,, V, <0 4)
During the end game (the time of interest in our analysis), we assume
that V, < 0 and the engagement terminates when V, crosses zero.

2. Target Dynamics

In this formulation, it is assumed that the evading target is moving
at a constant speed and performs lateral maneuvers only. The lateral
target dynamics are approximated by a first-order model

Ye=ag/Ve (5a)

ap=(ag—ag)/te (5b)

where 7 is the time constant of the target dynamics and a§, is the
target maneuver command. We assume that |a§| < ap**.

The target acceleration perpendicular to LOS, routinely used in
guidance logic synthesis, is given by

agy = agcos(yg + 1) (6)

3. Missile Dynamics

The missile planar dynamics are expressed using the coordinate
systems presented in Fig. 2. X,—M-Z; is parallel to the inertial
frame X;,—0;-Z;, with its origin located at the missile’s center of
gravity (c.g.). It is used to express the missile attitude relative to the
inertial frame. The missile equations of motion are derived in the
rotating body fixed coordinate frame Xy,,—M—Z;,, where the X, axis
is aligned with the missile’s longitudinal axis. It is assumed that

7 X

Fig. 2 Missile coordinate systems.

during the end game, the time of interest in our analysis, the missile
speed is constant. Thus, the planar missile dynamics are given by

& =q—L(aé.8)/(mVy) (7a)
g=M(q.8.8)/1 (7b)
6=gq (7¢)

§.= (8§ - 80) / 7, (7d)
S,:(&—&J/g (Te)

These surfaces are controlled by actuators, modeled by first-order
dynamics with time constants t, and 7,. The aerodynamic forces and
moments are nonlinear, partly unknown functions of the related
variables, in particular o, ¢, §,, and §,.

The missile flight path angle and acceleration perpendicular to the
LOS are given by

ym="0-a ®)

apn = ay cos(Yy — A) (©)

Here, the missile acceleration perpendicular to its velocity vector is
given by

ay =L(a,a,q,68.,68)/m (10)

In modeling the missile dynamics, we assume that the lift and the
aerodynamic pitch moment in Eqgs. (7) are generated by the missile
body and the control surfaces. This is modeled by

L/m=Lgf (@) + L f2(e + 8.) + Ls f(e +6,) (11a)

M/T=MEf (o) + M,q + M; fs(a +8.) + Ms f(o + 6,)

(11b)
where
LE=L,—L; —Ls (12a)
ME=M,—M; —M; (12b)
fi(),i=1,..., 6 express the nonlinear acrodynamic characteristics

of the missile.

B. Approximate Dynamics

We assume that the true dynamics of the target and missile are
unknown to the designer of the missile autopilot and guidance. Thus,
only approximate dynamics can be used, imposing modeling errors.
These approximations are discussed next.

1. Target

The true target dynamics are assumed to be related to the
approximate first-order linear model of Eq. (5b) by

apny = (agN — apn)/Te + Daen (13)

where the target acceleration command and the modeling error are
assumed to be bounded by

lagn| < Agene (14a)



1084 IDAN, SHIMA, AND GOLAN

|Auen] < Agx (14b)

2.  Missile

The integrated controller, designed in the sequel, uses an
approximation of the nonlinear model of Eqs. (7) and (11), i.e.,

a@=q—[LEf () + Ls fola + 8,) + Ly f3(e + )1/ Viy + Ay
(15a)

G=MEfy() + Myq+ M; fs(+8.) + My fola + ) + A,
(15b)

§, = (85 - 8(.) / z, (15¢)
§, = (55 - 5,)/r, (15d)

where I:(.), M(,), and f;(-),i=1,...,6 are approximations of their
respective quantities and functions. A, and A, express the modeling
errors, such as unmodeled nonlinearities and downwash effects,
assumed to be bounded by

A, < A, (16a)

1A, <A, (16b)

We assume no modeling errors on the actuators dynamics.

C. Linearized Kinematics and Dynamics

The definition of the sliding surfaces in the integrated guidance-
autopilot design will be based on simplified kinematics and
dynamics models. For these definitions it can be assumed that, during
the end game, the missile and target deviations from the collision
triangle are small. Thus, linearization of the end-game kinematics are
performed around the initial LOS [18].

The linearized kinematics variables are depicted in Fig. 3, in which
the X axis is aligned with the initial LOS. The approximate short-
period linearized equations of motion are used for the missile
dynamics [19].

The state vector of the integrated guidance-autopilot problem is
defined by

x:[Z Z agn o q & 51]T (17

Within the linear setting, ayy, defined in Eq. (9), is approximated by

o, X

z;
Fig. 3 Linearized end-game kinematics.

ayn =~ dy cos(Vy, — Ao) (18)
Thus, the missile acceleration normal to the initial LOS is given by
ayww =Cyla q 8. & (19)

where
Cu=[La O L5 Ls]cos(yu, —1o) (20)

The equations of motion of the integrated dynamics are

X = Ax + B8 + Gagy 1)
where
[0]1><4
_ | A A _ | _ _ [0]352
A‘[[OLM AM} Az =] ~Cor . B‘[BM
[0]1><4
(22)
G=[0 0 1/ 0 0 0 O] (23)

and [0],,, denotes a matrix of zeros with appropriate dimensions.
From the equations of relative motion normal to the initial LOS

01 0
Ain=10 0 1 (24)
0 0 —1/t

Using Eqgs. (7) and (11), the linearized short-period dynamics,
coupled with the first-order control surface actuation models of
Egs. (7d) and (7e), yield

~Ly/Vu 1 —Ls/Vy —Ls/Vy
A — M, Mq M(;( M(gl
M= 0 0 —1/z. 0
0 0 0 -1/t
' (25)
0 0
0 0
By = 1/t, O
0 1/t

III. Integrated Sliding Mode Control Guidance:
Autopilot Synthesis

The SMC design methodology entails three major steps:
1) selection of a sliding manifold o = 0 to ensure stable desired
dynamic characteristics of the system once in the sliding mode;
2) computation of the equivalent control to impose ¢ = 0 once on the
sliding surfaces, while using an approximate model of the system
dynamics; and 3) choosing an uncertainty controller to ensure
stability and finite time convergence to the surfaces when o # 0.

The definition of the sliding surfaces will be based on the
linearized models presented in Sec. IL.C. The equivalent and
uncertainty controllers will be designed using the full nonlinear
kinematics and dynamics models of the problem presented in
Secs. II.A and II.B, respectively.

A. Sliding Surfaces

The concept of ZEM [18] is very useful for deriving and
understanding missile guidance laws, especially those obtained
using optimal control and differential games theories. In a one-sided,
optimal-control, optimization problem it has the physical meaning of
being the miss distance if, from the current time onward, the
interceptor does not apply controls and the target performs the
expected maneuver. In a two-sided differential game problem, ZEM
is the miss distance if, from the current time onward, both players do
not apply controls. Commonly, it is the expected miss distance
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computed using the homogenous solution of the associated
linearized engagement equations of motion. Its usefulness in missile
guidance problems, where the only state of importance is the miss
distance, stems from reducing the n-dimensional guidance problem
to a scalar one. Moreover, its linear dynamics equation depends only
on the system inputs. The ZEM depends on the problem formulation
and model.

In arecent study [17], for a canard controlled missile (single-input/
single-output problem), the differential game-based ZEM was
chosen as the single sliding surface for an integrated guidance-
autopilot design. This choice does not require any assumption
regarding the future maneuvers of the target. If the system response is
maintained on this surface, it provides zero miss distance. Moreover,
once on the surface, no control action is needed to ensure interception
in the nominal linear case with perfect modeling and no target
maneuvers. In a realistic nonlinear environment, with modeling
errors and target maneuvers, the uncertainty control element of the
SMC solution is designed to nullify deviations from the sliding
surface in finite time.

The governing equation that is used to define the ZEM is the
linearized Eq. (21). Because of the definition of ZEM, assuming that

ge=[8 &1

and agy are identically zero, the measurementlike equation of ZEM
denoted by Z is

Z = Cyx(ty,) (26)
where
C;=[1 00 0 0 0 0] (27)

To compute x(z,,), we introduce the transition matrix ®(z;, #),
which, for the linear time-invariant system of Eq. (21), is given by

q)(tfv t) = q)(tgo) = eXp(Atgo) (28)
Thus,
X (tg(y) = q)(tgo)x (29)

Using the expressions of Egs. (28) and (29) in Eq. (26), the ZEM is
expressed as

Z 2 CyP(10)x = 2+ gy + apn T3V (tyo/ Te) + Vultgo)et
U, (1) q + Vs (108, + Vs, (140)8, (30)
where
Y() =exp(-0) + ¢~ 1 @31

and Yo (140), ¥y (1e0), Vs, (140), and s (t,,) are complicated functions
of the system parameters and f,,, and hence of the kinematics
variables.

Assuming small deviations from a collision triangle, the
displacement z normal to the initial LOS can be approximated by
7z & (A — Ao)r. Differentiating with respect to time yields

£o>

7+ 2ty ==V, 1220 = Vi1 (32)
Thus, the first two terms in Eq. (30) can be expressed as a function of
the kinematics variables V,, V,, and r. The last four complicated
terms of Eq. (30) can be obtained from the numerically computed
transition matrix ®(t,,) associated with A of Eq. (22). Using this,
together with the relationship obtained in Eq. (32), the ZEM of
Eq. (30) is expressed as

Z= V)»tgo + aENT%v/(tgo/tE) + CZq)(tgo)n (33)

where

n=[0 00 a g 5§ &]" (34)

contains the missile variables of the state vector preceded by zeros.

In the current two-input, multi-input/multi-output problem we
seek an additional sliding surface to take advantage of the design
degrees of freedom offered by the dual-control configuration. The
sought-after surface should not interfere with the first surface,
ensuring zero miss distance if the system is kept on it. Moreover, if
possible, it should not restrict the canard control, as it has been shown
in several studies that it has a higher effect in enhancing the homing
performance [1,11,20]. Thus, we choose the following sliding
surface based on flight-control considerations, without explicitly
referring to the canard control

Oy = Mgﬂ(ot) + M&,fﬁ(a +6,) (35)

The preceding equation expresses the angle of attack and tail
contributions to the missile aerodynamic pitch moments, resulting
from the approximate model of Eq. (15b). Because the missile is
assumed stable, this surface enforces the tail control to produce a
moment equal to the one generated by the body, but in an opposite
direction. Thus, missile response is damped, and trim is enforced
provided there are no maneuver commands issued by the canard. The
canard commands may be caused by guidance considerations to
remain on the Z = 0 surface.

In the sequel, the two sliding surfaces are grouped into the sliding
vector

o=[Z oyl

B. Equivalent Controller

The equivalent controller is designed to maintain the system on the
sliding surfaces, once those are attained. This is obtained by
imposing 0 = 0. Thus, the derivation of the equivalent controller will
require a derivative of the sliding vector.

The time derivative of ZEM is given by

Z = V}»tgo + V)jgo + T%E[dENl//(tgo/TE) + aENwJ(tgo/TE)igo]
+ CZ[q)/(tgo)igoﬂ + q)(tgo)ﬁ] (36)

where

V,=V2/r+aysin(yy — 1) + agsin(yg + 1) 37)

Vi ==ViV./r—aycos(yy —A) + agcos(yg + A) (38)

feo=—1+V,r/V? (39)
and

w/(tgo/TE) = aw(tgo/TE)/a[go = [[go/TE - 1//(tgc»/":E)]/":E (40)

P'(tyo) = 0P (1) /gy = P(1go)A (41)

Because of the structure of 7, its derivative 5 used in Eq. (36) is given
by Eqgs. (15), preceded by three zero elements. This can be expressed
by

n=f(m)+ Af(n) + Bs* (42)

where f(n) are the known state dependent terms of Egs. (15),

whereas A f (i) contains the modeling errors A, and A, in its fourth

and fifth elements, respectively. The matrix B is defined in Eq. (22).
The time derivative of the second surface is given by

6w = [MEFi@) o+ [M, Fo +8)]@+38)  @3)
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where fi(-), i = 4,6 denote the partial derivatives of the functions
fi(), i =4,6 with respect to their respective arguments. In this
equation, & is computed using Eq. (15a) or, equivalently, equals the
fourth element of f(n) + Af(n) in Eq. (42), i.e.,

a=Cyf(n) + A, 44)
where
C,=[0 0 01 0 0 0]

The relations of Eqgs. (13), (15d), (42), and (44) are used in
Eqgs. (36) and (43) to yield

6 =g+ Ag+ H§ (45)
where
g
_ { Vitgo+ Vidoo + apnTH (tao/ T6) oo — Ylteo/ Te) /i) }
(M fi(@) + M fole+ 8)ICof (0) = [Ms5 fo (e + )18,/

+ {CZq)(lgo)[Algon +f(77)]} (468.)
0
_ (al%N + TE_Aa_EN)TEw([g_O/"’:E) + CZq)(tgo)Af(”) }
b= | ey e o (46
_ _lep(tgo)B
= [[o W, Fole + 5,)/@]} (@60

The particular choice of the sliding surfaces ensures that the matrix H
in Eq. (46c¢) is upper triangular with nonzero terms on the diagonal,
and hence nonsingular. Using the bounds in Eqgs. (14) and (16), the
two elements of Ag can be bounded as
|Ag;] < A, i=1,2 (47)
In the absence of modeling errors and target maneuvers, once the
system reaches the sliding surface it will remain on it using the
equivalent control command &, given by

8o =—H'g (48)

C. Uncertainty Controller

Modeling uncertainties and disturbances may cause the system to
depart from the sliding surfaces. To accommodate these departures,
the equivalent controller is augmented by a second component,
sometimes referred to as the uncertainty controller. The goal of this
uncertainty controller is to drive the system to the sliding surface in
finite time, while ensuring closed-loop stability. The design of the
uncertainty controller is based on the approximate models of the
system dynamics given in Egs. (13—16). The kinematics model of
Eqgs. (1-3) is assumed to be known exactly.

The integrated guidance-control logic is designed using the
Lyapunov function candidate

L =loTo (49)
The time derivative of this Lyapunov function candidate is given by

L=0"6=0"(g+ Ag+ H&) (50)

where the result in Eq. (45) was used for . The SMC controller is
chosen to be

8¢ =8¢ — H ' Msgn(o) (51)

The second term on the right-hand side of Eq. (51) is the uncertainty

controller, where M = diag(u,, u,) is a diagonal 2 x 2 matrix, and
sgn (o) = [sgn(o,) sgn(oy) "

With this controller, the derivative of the Lyapunov function

candidate becomes

2
L=0"[Ag— Msgn(o)] =} o/[Ag; — psgn(@)]  (52)

i=1

Using the bounds in Eqs. (47), this derivative can be bounded by

2

L==> lol(ui—A,) (53)

i=1
Choosing

i > Ay, i=12 (54)
will guaranty a negative definite Lyapunov function derivative and
hence convergence to the two-dimensional sliding manifold in finite
time. Moreover, the values of p;, i=1,2 could be tuned to
emphasize the attraction of one sliding surface compared with the
other. In arealistically noisy and uncertain interception environment,
a boundary layer around the sliding surface can be employed to
provide smooth control commands and to avoid chattering caused by
the sgn function in Eq. (51).

IV. Performance Analysis

Performance of the proposed integrated guidance and control
algorithm is evaluated through numerical simulations, incorporating
the nonlinear models of Egs. (1), (5), and (7). A sample run is first
examined, followed by a Monte Carlo study.

A. Scenario

The numerical study was performed for a generic interceptor
model, which is based on the missile control example introduced in
[21] and used in [11]. It is assumed that the target performs a square-
wave evasive maneuver with a period of AT and a phase of A¢
relative to the beginning of the simulation. The initial missile-target
range was set to 1000 m. The initial missile velocity vector was
aligned with the initial LOS. The target initial velocity vector is
pointed 20 deg away from the initial LOS. An example of the
engagement geometry and trajectories is plotted in Fig. 4.

The missile and target model parameters are given in Table 1. The
functions f;(-), i=1,...,6 were chosen to be the standard
saturation functions

—3500F T T T v -
— Missile
— — -Target ||

—400

-300f 1

=200

g
N~ —100

04

Initial LOS
100 F b

200 : 1

0 200 400 600 300 1000
X pm

Fig. 4 Sample run engagement trajectories.
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Table 1 Simulation parameters

Missile Target
Actual Model
Vi =380 m/s LB =1190 m/s? Ve =380 m/s
7, =0.02s L;, =40 m/s? ap=15g¢g
7,=0.02s L; =40 m/s’ AT =1s
ME =—-100 s2 AP0, 1] s
Mq =_-5¢! 7£[0.05,0.2] s
M;, =80 s
M;, =—80s72
U, u>U,
sat(u) =1 u lu| < U, (55)
-U,, u<-U,

with U,, = 25deg for all i. Moreover, the fins’ deflections were
limited to +25 deg. For the controller design, the model functions
f4(+) and f¢(-), which have to be differentiated with respect to their
argument [see Eq. (43)], were chosen as smooth approximations of
Eg. (55).

B. Sample Run Performance

The performance of the proposed guidance and control design is
first evaluated for a sample run. The target maneuver was
characterized by 7; = 0.1 s and A¢ =0 s. In Fig. 5, the ZEM and
oy, computed using Egs. (33) and (35), respectively, are shown. The
missile and target accelerations are given in Fig. 6, and the canard and

200 T T

~60 i i
0 0.5 1 1.5
Time, sec

Fig. 5 ZEM and o), for a sample run.

Accelerations, g

0.5 1 1.5
Time, sec

Fig. 6 Missile and target acceleration profiles for a sample run.

40

30

[}
[=)

Control Surface Deflections, deg
=)

Time, sec
Fig. 7 Canard and tail deflections for a sample run.

tail deflection angles are plotted in Fig. 7. The initial ZEM error,
caused by the heading error, is decreased and maintained close to the
desired surface, i.e., Z = 0, up to interception. Deviations from the
second surface occur as a result of tail saturation, evident in Fig. 7.
This happens when high accelerations are generated (see Fig. 6) to
close the initial heading error and account for the target evasive
maneuvers. When the tail is not saturated, the sliding variable
remains close to zero, e.g., in the time interval of 1.05-1.25 s. The
ZEM surface is maintained mainly due to the effect of the canard
control. This is possible because the second surface (o;,) does not
explicitly restrict the canard control. Note that strong activity of the
canard control is required to achieve this goal.

C. Homing Performance

The homing performance of the proposed algorithm is evaluated
by a Monte Carlo simulation study consisting of 100 sample runs for
each test point. In these simulations, for each test case, the random
variables were chosen as the maneuver phase A¢ of the target and the
missile aerodynamic parameters (L5, Ls , Ls, M%, M,, M , and
M;,). We assume these parameters to be distributed uniformly, where
A¢ ~ U(—.5,.5) s and the aerodynamics coefficients of the missile
varied randomly by £10% around the model values given in Table 1.
Results are presented for targets with different dynamics
characteristics, specified by the time constant 7. Although an
entire range of 7 values was tested (see Table 1), for brevity only two
representative cases are shown, depicting the effect of target
maneuverability on the interception accuracy.

The cumulative distribution of the miss distance for the nominal
missile parameters (i.e., no uncertainty in the missile aerodynamic
data) is plotted in Figs. 8 and 9 for r; =0.1 s and 7; =0.15 s,
respectively. The plots show the results for various values of ,, the
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IS

Cumulative Distribution

o
)

0 i i i i i
0 0.1 0.2 0.3 0.4 0.5

Miss distance, m

Fig. 8 Homing performance for the nominal parameters; 7, = 0.1 s.
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Fig. 9 Homing performance for the nominal parameters; t; = 0.15 s.

gain of the uncertainty controller of the flight-control motivated
sliding surface. The results reveal that for approximately 50% of the
cases for targets with a higher bandwidth (Fig. 8) and for
approximately 80% for the “slower” targets (Fig. 9) the miss distance
is negligible (less than 5 cm).

The effect of changing the value of the gain i, is noticeable only
for the larger miss distances. For example, for 7, = 0.1 s (Fig. 8) and
a gain of p, = 10, approximately 90% of the runs end with miss
distances that are lower than 0.25 m. Viewed from a different
perspective, using a kill mechanism with a lethal radius of 0.25 m will
provide a single-shot kill probability of 90%. In comparison, for
> = 100 the same kill probability can be obtained only with a lethal
radius of 0.5 m. From both figures it is apparent that changing the
performance requirement, for example from 90% kill probability to
99%, may require a different choice of the gain p,. Also, from
comparing both figures it is clear that, as expected, as 7 increases the
homing performance improves, i.e., to achieve the same single-shot
kill probability a smaller lethal radius is required.

In Figs. 10 and 11, the cumulative distribution of the miss distance
is plotted for 10% uncertainty in the missile parameters. The plots
show the results for various values of j,. Figure 10 is obtained for
7z = 0.1 s and Fig. 11 for 7; = 0.15 s. The same qualitative results
discussed before for the nominal missile parameters are repeated here
for the case with uncertainties. By comparison to Figs. 8 and 9, it is
evident that the homing performance somewhat degrades with the
introduction of uncertainties. For example, for a target with a time
constant t; = 0.15 s and when there is no uncertainty in the missile
parameters, 90% of the miss distances are lower than 8 cm, attained
when selecting p, =10 (see Fig. 9). In the same case with
uncertainty, 90% of the miss distances are lower than 10 cm when
selecting 1, = 50 (see Fig. 11).
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Fig. 10 Homing performance for 10% uncertainty in the aerodynamic
parameters; 7; = 0.1 s.
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Fig. 11 Homing performance for 10% uncertainty in the aerodynamic
parameters; tp = 0.15 s.

From Figs. 8-11 it is apparent that increasing p, up to a certain
level improves the missile dynamic characteristics and consequently
the interception accuracy. However, using a very high gain may
result in degraded homing performance, observed, for example, in
the 1, = 100 case for the parameters of Fig. 8. This can be attributed
to the fact that an increased emphasis on the flight-control motivated
sliding variable implies a reduced emphasis on the guidance
motivated ZEM sliding variable Z. For the current example, a good
selection of the gain for the second surface is 1, = 50, with a relative
small sensitivity of the performance around that value.

V. Conclusions

An integrated guidance-autopilot design approach for an
interceptor with forward and aft control mechanisms was presented
in this paper. In contrast to the conventional two-loop design, it was
shown that the integrated controller can account simultaneously for
the guidance and autopilot requirements by using the additional
degree of freedom offered by the dual-control configuration.

The integrated design, carried out using the sliding mode
approach, required the definition of two sliding surfaces. Motivated
by the recent results of a single controller integrated guidance-control
design, one surface was defined as the zero-effort miss distance,
encountered in the differential game formulation of the interception
problem. Because, compared with tail control, canard control is more
effective in enhancing the homing performance, an autopilot
oriented sliding variable that does not restrict the canard control was
introduced to define the second sliding surface. Monte Carlo analysis
was used to investigate the interaction between the two sliding
variables. The results show that remaining on both guidance and
autopilot oriented sliding surfaces is important to achieve good
homing performance, whereas emphasizing one surface over the
other may result in degraded performance.

Robustness to target maneuvering and interceptor parameters
uncertainties was shown. The results indicate that using the derived
guidance law, small miss distances can be obtained even in stringent
interception scenarios and in the presence of modeling errors.
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